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ABSTRACT: Background: Variants in GBA are
the most common genetic risk factor for Parkinson’s
disease (PD). The impact of different variants on the
PD clinical spectrum is still unclear.
Objectives: We determined the frequency of GBA-
related PD in Italy and correlated GBA variants with motor
and nonmotor features and their occurrence over time.
Methods: Sanger sequencing of the whole GBA gene
was performed. Variants were classified as mild, severe,
complex, and risk. β-glucocerebrosidase activity was
measured. The Kaplan-Meier method and Cox propor-
tional hazard regression models were performed.
Results: Among 874 patients with PD, 36 variants
were detected in 14.3%, including 20.4% early onset.
Patients with GBA-PD had earlier and more frequent
occurrence of several nonmotor symptoms. Patients
with severe and complex GBA-PD had the highest
burden of symptoms and a higher risk of hallucina-
tions and cognitive impairment. Complex GBA-PD
had the lowest β-glucocerebrosidase activity.
Conclusions: GBA-PD is highly prevalent in Italy. Dif-
ferent types of mutations underlie distinct phenotypic
profiles. © 2020 International Parkinson and Move-
ment Disorder Society
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Heterozygous variants in the GBA gene, encoding the
lysosomal enzyme β-glucocerebrosidase (GCase), are
the most common genetic risk factor for Parkinson’s
disease (PD) worldwide.1-5
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Overall, 5% to 10% of patients with PD carry a het-
erozygous GBA variant, but such frequency varies widely
among populations, from 10% to 31% in Ashkenazi Jew-
ish to 3% to 12% in non-Jewish cohorts, and 2.8% to
4.5% in Italy.5-11 However, most studies have only tested
the most common GBA mutations, likely underestimating
prevalence rates. To date, more than 500 pathogenic vari-
ants have been reported and classified as complex, severe,
and mild based on the mutation type and residual GCase
activity in patients with Gaucher disease (GD).5,12,13

Other variants not associated to GD recently emerged as
risk factors for PD.14-17

GBA-PD is overall characterized by earlier onset,
worse motor impairment, higher risk of cognitive decline
and depression, more rapid progression, and decreased
survival.3,7,10 Few studies have attempted to link variant
severity with some clinical features,18-21 yet genotype–
phenotype correlates have not been fully elucidated.
Here, we screened the whole GBA gene in a large

cohort of Italian patients with PD and measured GCase
activity in a subgroup. We performed a detailed com-
parison of motor and nonmotor features, and their
occurrence over time, in patients with and without
GBA mutations and, within the GBA group, among
patients carrying variants of different severity.

Patients and Methods

We recruited 874 unrelated PD probands from 13
neurological tertiary centers spread in the Italian

territory. Approval was obtained by the Institutional
Ethics Committee of the Coordinator Center (Protocol:
11799/08) and confirmed by the committees of each
participating center. Written informed consent was
obtained. The whole GBA coding region was
sequenced, and variants were divided into 5 classes:
mild (known to cause nonneuronopathic GD), severe
(causing neuronopathic GD), risk (associated with
higher PD risk, but not reported in GD), complex (2 or
more variants in cis as the result of conversion, fusion,
insertion of parts of GBAP1 into GBA), and unknown.
GCase activity was assessed in a subset of patients.
Methodological details regarding inclusion criteria,

clinical assessment, molecular analysis, measurement of
GCase enzymatic activity, and statistical analysis are
reported in the Supplementary Material.

Results

Sequencing of the GBA gene was carried out in 874
patients with PD, and clinical data were obtained for
850 of them. Genetic variants were identified in 125
subjects (GBA-PD, 14.3%), including 36/176 (20.4%)
early-onset PD (EOPD) and 89/674 (13.2%) late-onset
PD cases. Details of all identified variants are presented
in the Supplementary Results and Supplementary
Tables 1 and 2.
Normalized GCase activity was calculated in 38

patients with GBA-PD, 27 nonmutated PD patients
(NM-PD), 3 patients with GD, and 21 healthy controls.

FIG. 1. Comparison of frequency of motor and nonmotor symptoms among different groups. (A) Frequency (%) of motor and nonmotor symptoms in
GBA-PD versus NM-PD. (B) Frequency (%) of motor and nonmotor symptoms among GBA-PD subgroups carrying mild, complex, severe, and risk var-
iants. Statistical comparisons are reported in Supplementary Table 5. *Significantly different comparisons (for details, see Supplementary Table 3).
AKR, akinetic-rigid phenotype; GBA-PD, GBA-mutated PD; ICB, impulsive compulsive behavior; MCI, mild cognitive impairment; NM-PD, nonmutated
PD; PD, Parkinson’s disease.
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FIG. 2. Comparison of survival curves in GBA-PD versus NM-PD, and in carriers of distinct types of GBA variants. Kaplan-Meier method for disease-
duration scale time and log-rank tests were used for comparison of survival curves in GBA-PD versus NM-PD (A–F) and in GBA carriers of mild, com-
plex, severe, and risk variants (G–H). Log-rank tests showed that GBA-PD developed anxiety, ICB, dysautonomia, nonmotor fluctuations, hallucina-
tions, delusions (not shown in figure; P < 0.001), and cognitive impairment significantly earlier than NM-PD. Log-rank tests also showed that patients
with severe and risk GBA variants manifested hallucinations and cognitive impairment earlier than carriers of mild GBA variants. Patients with complex
GBA variants had earlier hallucinations and cognitive impairment than carriers of mild GBA variants, albeit not significantly. GBA-PD, GBA-mutated PD;
ICB, impulsive compulsive behavior; MCI, mild cognitive impairment; NM-PD, nonmutated PD; PD, Parkinson’s disease.
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The patients with GD had the lowest GCase activity,
followed by GBA-PD and NM-PD (P = 0.0001). When
GBA-PD patients were stratified by mutation type,
GCase activity was significantly lower in carriers of
complex variants compared with other categories (Sup-
plementary Fig. 1).
Clinical features comparing GBA-PD and NM-PD

groups are reported in Figure 1 and Supplementary
Table 3. Compared with NM-PD the patients with
GBA-PD showed a significantly younger age and more
common akinetic-rigid phenotype at onset; more fre-
quent family history for PD; and a higher burden of all
nonmotor features, including anxiety, impulsive–com-
pulsive behavior (ICB), dysautonomia, hallucinations,
delusions, cognitive impairment, and nonmotor fluctua-
tions. The frequency of motor complications (motor
fluctuations and dyskinesia) was comparable in the 2
groups, albeit occurring earlier in patients with GBA-
PD. Hallucinations also manifested earlier in the GBA-
PD group, who was overall exposed to a lower total
levodopa equivalent daily dose (LEDD) but a similar
dose of Dag.
The patients with GBA-PD had a significantly higher

risk of having a more advanced disease stage (Hoehn
and Yahr >2), even after adjusting for age and gender.
There was no difference in terms of risk of motor fluc-
tuations and dyskinesia. This group also had a signifi-
cantly higher risk of anxiety, ICB, dysautonomia,
hallucinations, and cognitive impairment as well as
nonmotor fluctuations, even after adjusting for gender,
age, total LEDD, and LEDD Dag (Supplementary
Tables 4 and 5). Log-rank tests showed that all these
features also developed earlier in the GBA-PD group
than in the NM-PD group (Fig. 2).
The patients with GBA-PD were further divided into

4 groups according to the type of GBA variant: mild
(mGBA-PD), complex (cGBA-PD), severe (sGBA-PD),
or risk alleles. No differences emerged among the
groups in the frequency of motor and nonmotor symp-
toms except for ICB, delusions, and dementia (Supple-
mentary Table 6).
In the Cox proportional hazard model, patients with

mGBA-PD had a lower risk of dyskinesia than patients
with sGBA-PD, even after adjusting for age, gender,
and total and Dag LEDD. The patients with mGBA-PD
also had a lower risk of hallucinations and cognitive
impairment than the other 3 groups (not reaching sta-
tistical significance for comparison with cGBA-PD),
which survived all adjustments. The risk of delusions
was lower in patients with mGBA-PD compared with
cGBA-PD and sGBA-PD groups, and survived all
adjustments. There were no significant differences
among GBA groups for anxiety, ICB, dysautonomia,
and nonmotor fluctuations (Supplementary Table 7).
Log-rank tests showed that patients with mGBA-PD

had a significantly later occurrence of cognitive

impairment and hallucinations (compared with sGBA-
PD and risk GBA-PD groups; Fig. 2) and delusions
(compared with sGBA-PD and cGBA-PD groups).
There were no differences among groups with regard to
the onset of anxiety (P = 0.4), ICB (P = 0.3),
dysautonomia (P = 0.3), motor fluctuations (P = 0.2),
nonmotor fluctuations (P = 0.2), and dyskine-
sia (P = 0.1).

Discussion

Here we report the first comprehensive analysis of
the whole GBA gene in 874 Italian patients with PD.
We detected GBA variants in 125 (14.3%) subjects,
well above the 7% to 10% frequency reported in non–
Ashkenazi Jewish populations.1,6,22-28

Previous screenings in 2 other Italian PD cohorts dis-
closed a frequency of 3% to 5%.8-10 However, these
studies focused either on detecting the 2 most common
mutations (N370S and L444P) or on sequencing exons
9 and 10 only. Conversely, we detected 36 distinct vari-
ants, of which 3 novel. The N370S and L444P muta-
tions were found in only 47%, and mutations in exons
9 and 10 in only 58% of the positive cases. These find-
ings underlie the following 2 important concepts: (1)
the frequency of GBA-related PD in Italy is among the
highest worldwide among non–Ashkenazi Jewish
populations and (2) a focused mutational screening
cannot represent the method of choice at least in the
Italian population.
Consistent with previous studies,16,29 the prevalence

of GBA mutations among EOPD patients raised to
20.3%, suggesting that GBA screening in EOPD is as
relevant for diagnostic purposes as testing the most
common EOPD genes, such as PARK2 and PINK1 or
even LRRK2.
We observed significant differences of normalized

GCase values in the GBA-PD group versus both healthy
controls and NM-PD groups, as reported.30 When com-
paring enzymatic activity among different mutation
classes, complex variants had the lowest activity,
whereas risk variants had the highest. These data
require replication in larger cohorts and correlation
with clinical data given the variability at the individual
level.
We confirm a significant association of GBA variants

with earlier age at onset, positive family history for PD,
and more rapid disease progression.5,7,10

As a novel finding, we show a significant association
of GBA-PD with akinetic-rigid onset and several non-
motor symptoms, such as anxiety, ICB, hallucinations,
and dysautonomia, which also occurred earlier. This
was paralleled by a significantly lower dopaminergic
daily dose, supporting the neuropsychiatric and auto-
nomic vulnerability of this group of patients. The

4 Movement Disorders, 2020

P E T R U C C I E T A L



increased predisposition to develop ICB, previously
reported in PARK2-associated PD,31 supports the view
that ICB may represent a manifestation of PD rather
than a pure drug-induced phenomenon. Dysautonomia
also tended to occur earlier in patients with GBA.
Indeed, worse autonomic and cognitive functions in
de novo PD predict the development of ICB during the
disease course,32 suggesting a close link of these symp-
toms as predictors of disease deterioration.
Although the clinical spectrum of GBA-PD seems well

delineated, the variability of clinical features among
mutation carriers is remarkable. This may be at least
partly explained by the diverse impact of distinct GBA
mutations. To date, only a few studies have attempted
to delineate the phenotypic profile associated to specific
mutation classes, showing earlier age at onset and a
greater risk for dementia and other nonmotor symp-
toms in carriers of severe variants.10,18-21 In the present
study, we further addressed this issue by dividing
patients with GBA-PD into subgroups based on the var-
iant type and attempted to profile the clinical features
that recurred more frequently, or earlier in the disease
course, within each subgroup. Severe GBA variants
were characterized by younger onset and more severe
progression as per the shorter time to develop balance
disturbances and the higher risk of hallucinations and
cognitive impairment. Subjects carrying complex vari-
ants had a similar phenotype, with a comparable risk
of hallucinations and dementia, but also a higher fre-
quency of delusions. Carriers of mild variants showed a
milder phenotype, reaching postural instability after
longer time, less frequent delusions, and later cognitive
impairment. Finally, patients carrying a risk allele had
the highest age at PD onset and were the only patients
showing tremor-dominant phenotype at onset and later
occurrence of nonmotor fluctuations. When considering
ICB in the 4 subgroups, risk and mild variant carriers
had, respectively, the lowest and highest frequency,
likely determined by having the lowest and highest dose
of Dag. This might reflect a lower vulnerability to late
psychiatric complications (hallucinations and delusions)
of mild variant carriers who could be treated with
higher concentrations of Dag.
The main limitation of this study relates to its retro-

spective design. We tried to minimize this by employing
the Kaplan-Meier method for the disease-duration scale
time and log-rank tests for the comparison of survival
curves. Moreover, we acknowledge the lack of objective
outcome measures to assess symptom severity. Yet,
given the heterogeneity of the cohort (including patients
with widely variable disease duration and assessed in
different pharmacological conditions), a comparison of
scores would have provided unreliable results.
This study has a number of strengths. First, it pro-

vides a comprehensive assessment of motor and non-
motor features in the same large cohort of subjects,

showing previously unreported associations. Second, it
reports for the first time a comparison among all muta-
tion classes, including complex alleles. Albeit these are
considered similar to severe variants, our clinical and
enzymatic data support the view that complex variants
represent a distinct group. Finally, it is worth reporting
the full picture of GBA-related PD in a different popu-
lation from those described so far to allow meaningful
epidemiological comparisons.
In conclusion, GBA-related PD has a high prevalence

in the Italian population, also contributing to a signifi-
cant proportion of EOPD cases. Our data expand the
spectrum of nonmotor features associated to GBA and
suggest that different types of mutations might underlie
distinct phenotypic profiles. This evidence does not
merely carry a clinical implication, but it is relevant in
the attempt of developing disease-modifying strate-
gies.33 A fundamental research question now is whether
GBA phenotypes related to distinct mutation types
have a different rate of disease progression and survival
in a prospective cohort. If so, stratification by mutation
type will be mandatory when designing a clinical trial
focusing on GBA-PD

Acknowledgments: We are grateful to the patients and families for
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