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ABSTRACT: Background: The dysfunctional activity
of the medial prefrontal cortex has been associated
with the appearance of the somatic symptom disor-
der, a key feature of the Parkinson’s disease (PD) psy-
chosis complex.
Objectives: The objectives of this study were to investigate
whether the basal contents of inhibitory γ-aminobutyric acid
and excitatory glutamate plus glutamine neurotransmitter
levels are changed in the medial prefrontal cortex of patients
with PD with somatic symptom disorder and whether this
alteration represents a marker of susceptibility of PD to
somatic symptom disorder, thus representing a signature of
psychosis complex of PD.
Methods: Levels of the γ-aminobutyric acid and gluta-
mate plus glutamine were investigated, at rest, with pro-
ton magnetic resonance spectroscopy. Total creatine
was used as an internal reference. The study cohort
included 23 patients with somatic symptom disorder plus
PD, 19 patients with PD without somatic symptom disor-
der, 19 healthy control subjects, and 14 individuals with

somatic symptom disorder who did not show other psy-
chiatric or neurological disorders.
Results: We found that, compared with patients with PD
without somatic symptom disorder or healthy control
individuals, patients with somatic symptom disorder, with
or without PD, show increased γ-aminobutyric acid/total
creatine levels in the medial prefrontal cortex. The medial
prefrontal cortex contents of glutamate plus glutamine/
total creatine levels or γ-aminobutyric acid/glutamate
plus glutamine were not different among groups.
Conclusions: Our findings highlight a crucial pathophysi-
ologic role played by high γ-aminobutyric acid within the
medial prefrontal cortex in the production of somatic
symptom disorder. This phenomenon represents a signa-
ture of psychosis complex in patients with PD. © 2020
International Parkinson and Movement Disorder Society
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Parkinson’s disease (PD) is a neurodegenerative con-
dition characterized by movement disorder associated
with a high prevalence of neuropsychiatric conditions.
The somatic symptom disorder (SSD), along with hallu-
cinations and delusions, is considered as the third com-
ponent of the PD psychosis complex.1,2 The notion is
supported by epidemiological evidence indicating that,
compared with the general population, where the inci-
dence of SSD ranges between 3.5% and 18.4%,3

patients with PD exhibit an SSD incidence between
7.0% to 66.7%.4-8

The pathophysiology of SSD has not been completely
unfolded. Imaging-based studies suggest that the hypo-
activity of the medial prefrontal cortex (mPFC) and the
hyperactivity of subcortical structures connected to
frontal regions are neuro-functional substrates for the
production of SSD.9-13 From a physiological stand-
point, the mPFC, by controlling the limbic activity, reg-
ulates the integration of body perceptions with
cognitive-affective information.14-16 In addition, the
mPFC, by shaping the corticostriatal-thalamocortical
loop, sets a flux of sensory information to the cortex.17

The modulatory action of mPFC is locally promoted by
inhibitory γ-aminobutyric acid (GABA)-ergic interneu-
rons that in turn tonically trigger a broad range of glut-
amatergic neurons that project to subcortical structures
such as the amygdala,18 the thalamus,19 and the stria-
tum.20 Multimodal imaging studies support this notion
by showing that a high content of GABA has been asso-
ciated with a reduced top-down control of limbic activ-
ity and elevated state/trait anxiety.21-23

In this study, we have therefore investigated whether
a high basal content of GABA in the mPFC is a peculiar
and distinct feature of patients with PD with SSD (SSD
+PD) and whether this alteration is a functional signa-
ture of SSD rather than a marker of PD pathology. The
study cohort included 75 individuals, 23 of whom were
patients with SSD+PD (SSD+PD), 19 PD patients with-
out SSD (PD); 19 healthy control (HC) subjects; and 14
subjects with SSD who did not show other psychiatric
or neurological disorders (SSD). Proton magnetic reso-
nance spectroscopy (1H-MRS) with a Meshcher-
Garwood Point Resolved Spectroscopy sequence
(MEGA-PRESS)24,25 was used to enable, noninvasively
and in vivo, simultaneous quantification of GABA and
excitatory glutamate + glutamine (Glx) levels within the
mPFC of the studied subjects.

Material and Methods
Study Sample

This study was approved by the local institutional
ethics committee and was performed according to the
Declaration of Helsinki and subsequent revisions. All
participants gave written informed consent, and they

were enrolled at the Neurology Clinic of the University
“G. d’Annunzio” of Chieti-Pescara, Italy. Exclusion
criteria were a prior history of major medical condi-
tions; head injury, including subconcussive trauma; psy-
chiatric or neurological disorders (except PD and SSD);
history of substance abuse; or any contraindications to
the use of magnetic resonance imaging (MRI). The PD
diagnosis was carried out according to the UK Brain
Bank Criteria. The mental status and the presence of
SSD were assessed in accordance with the Diagnostic
and Statistical Manual of Mental Disorders, Fourth
Edition, Text Revision26 and with patient interviews as
described in the next section. All patients underwent
computerized tomography/MRI and single-photon
emission computed tomography before entering the
study. Patients at the prodromal or clinical stages of
dementia were excluded at the enrollment stage. The
Unified Parkinson’s Disease Rating Scale Part III and
Hoehn and Yahr scale were used to assess the presence
and severity of extrapyramidal signs. All subjects were
evaluated for global cognition using the Mini-Mental
State Examination. Frontal function was assessed using
the Frontal Assessment Battery. Control subjects were
additionally evaluated for(1) attention skills, sustained
attention, divided attention, task coordination, and set-
shifting using the Trail Making Test; (2) selective atten-
tion using attentional matrices; (3) verbal short-term
and long-term memory using the Babcock Story Recall
Test; and (4) auditory working memory using the for-
ward and backward Digit Span tests. None of the
patients or control subjects were under anxiolytic or
antidepressive drugs. Patients with PD were under sta-
ble doses of dopaminomimetic compounds. PD drugs
were withdrawn the day of MRI acquisition and
reinserted after MRI acquisition.

Evaluation of SSD
Patients were subdivided into 3 groups: PD, SSD, or

SSD+PD. This division of patients with PD was based
on the direct observation of symptoms at the time of
the diagnosis. In a second evaluation, patients under-
went semistructured interviews performed by a rater
blinded to SSD or PD diagnosis. The interviews, based
on the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition, Text Revision,26 assessed
somatic complaints by using examples and a checklist
presented to patients and caregivers. The interviews
were focused on the presence of somatic symptoms
traits (ie, dependency, mannerism, viscosity, adoption
of a sick role, histrionic and dramatic representation of
illness). Past somatic symptoms were also evaluated by
including information taken from prior hospital records
and reports from the patient’s general practitioner col-
lected in the previous 4 to 20 years. Supplementary
material details methods of SSD categorization. The

Movement Disorders, Vol. 35, No. 12, 2020 2185

M P F C G A B A L E V E L S I S A S I G N A T U R E O F S S D I N P D



Neuropsychiatry Inventory assessed the presence of
somatic-type delusional disorders.27 Study participants
were also tested with the symptom questionnaire.28 The
Diagnostic Criteria for Psychosomatic Research were
used to ensure a parametric assessment of the symp-
toms in a neurodegenerative condition.29-32

MRI Protocols
MRI data were collected with a Philips Achieva 3 Tesla

scanner (Philips Medical Systems, Best, The Netherlands)
using a whole-body radiofrequency coil for signal excita-
tion and an 8-channel phased-array head coil for signal
reception. Structural images were acquired using a
3-dimensional T1-weighted turbo field-echo sequence
(repetition time/echo time [TR/TE]= 11/5 milliseconds,
slice thickness of 0.8 mm). T2-weighted fluid attenuation
inversion recovery (TR/TE= 12000/120 milliseconds, slice
thickness of 4 mm, field of view = 230 mm × 140 mm
× 190 mm) images were also acquired to exclude the
presence of concomitant pathologies. Spectra were
obtained from a 1H-MRS voxel centered on the mPFC
and included the ventral portion of anterior cingulate cor-
tex, a region critical for emotional processing (Fig. 1A).33

To preserve a good signal-to-noise ratio,25 the 1H-MRS
voxel size was of 2.0 (anterior–posterior) × 3.0 (left–right)
× 3.0 (skull–caudal) cm3. Meshcher-Garwood Point
Resolved Spectroscopy sequence (TR/TE = 2000/68 milli-
seconds, 320 averages; 14-millisecond sinc-Gaussian
editing pulses were applied at 1.9 ppm (on) and 7.46
ppm, in a block-interleaved fashion, −40 blocks of 8
TRs, each block (alternately either on or off) was used to
acquire 1024 points with a spectral width of 2000
Hz. The sequence generates 2 subspectra, with the editing
pulse on in one and off in the other. Specifically, an
editing pulse is applied to GABA spins at 1.9 ppm to
selectively refocus the evolution of J-coupling to the
GABA spins at 3.02 ppm (on spectra). In the other, the
inversion pulse is applied elsewhere so that the J-coupling
evolves freely throughout the echo time (off spectra). Sub-
tracting off spectra from on spectra, overlying total crea-
tine (tCr) signal was removed from the edited spectrum,
revealing the GABA signal in the difference spectrum.25

The spectrum from a representative patient is reported in
Figure 1B. Because acute pharmacological effects can
affect 1H-MRS spectra, drug assumption was withdrawn
the day of MRI session. Point-resolved spectroscopy
sequence (PRESS) (TR/TE = 2000/40 milliseconds, 16-
step phase cycle, and 128 averages) with and without
water suppression was additionally acquired by using
chemically shift selective pulses. A total of 1024 points
were acquired with a spectral width of 2000 Hz. The
PRESS data set was available for 46 of 76 subjects (8/19
HC subjects, 9/14 patients with SSD, 13/19 patients with
PD, 16/23 SSD+PD patients).

Data Analysis
GANNET 3.0 tool34 was used to quantify GABA/tCr

and Glx/tCr in each spectrum using default parameters,
including frequency and phase correction of time-
resolved data using spectral registration (Fig. 1C,D).
GANNET extension was used to mask the 1H-MRS
voxels and coregister them on the structural image.35 The
definition of the gray matter (GM) and white matter
within the 1H-MRS voxel and the assessment of the tis-
sue volumes were obtained by combining the outputs of
“recon-all” (FreeSurfer) and “fslmaths/fslstats” (FMRIB
Software Library)36 command lines. All the generated
images were visually checked with FMRIB Software
Library view to validate the location of the MRS voxel
and assess the confidence in tissue segmentation. 1H-MRS
findings were reported as ratios of metabolites/tCr
because (1) this quantification exhibits a performance
equal to, or better than, water referencing37; (2) the tCr
concentrations are independent from anxiety-related21 or
neurodegenerative-related disorders38; (3) tCr-referenced
metabolite values are expected to be less sensitive to
changes related to tissue atrophy. Because the edited sig-
nal at 3 ppm contains contributions from both the mac-
romolecules and homocarnosine, the signal was labeled
as GABA+.39 PRESS spectra with and without water sup-
pression were analyzed by using JMRUI40 to calculate
the area under the tCr and water peaks, respectively. In
detail, spectra with water suppression were filtered to
remove residual water by using the Hankel-Lanczos sin-
gular values decomposition algorithm. After autophasing,
baseline and frequency shifts correction, a priori knowl-
edge database (tCr, 3.03 ppm) was created to put con-
straints on the advanced magnetic resonance fitting
algorithm within the JMRUI package.40 Peak shifts were
restricted to �0.05ppm of the theoretical location. Spec-
tra with artifact and metabolites fit with Cramer Rao
LOWER BOUNDS above 20% were excluded.38 Thus,
water signals were used as an internal reference standard
to perform absolute tCr quantification.38,41-43

Statistical Analysis
Analysis of variance and Bonferroni post hoc tests

were used to evaluate the group differences regarding
demographic and clinical data. Analysis of covariance
and Bonferroni post hoc tests were used to evaluate
group differences for levels of metabolites/tCr or
tCr/water. Brain metabolites were considered as an
independent variable and analyzed separately. Each
model considered the effect of age, educational levels,
sex as well as GM within the 1H-MRS voxel. More-
over, a t test for 2 independent samples was used to
assess differences between patient groups on disease
duration and scores of the Unified Parkinson’s Disease
Rating Scale Part III and Hoehn and Yahr scales. A
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chi-squared test was carried out to assess the presence
of sex-related group differences.

Results

The demographic, clinical, and structural imaging fea-
tures of the study participants are shown in Table 1.
Symptom Questionnaire–somatic symptoms subscale
items of each group are shown in Supplementary Table 1.
Supplementary Table 2 reports the specific symptoms
experienced by each patient with SSD+PD and SSD.
The content of GABA+/tCr within the mPFC

was found to be significantly different among groups
(mean � standard deviation: HC = 0.0819 � 0.0201;
SSD = 0.1119 � 0.0263; PD = 0.0848 � 0.0204;
SSD+PD = 0.1095 � 0.0274; F3,74 = 8.179, P < 0.001).
A post hoc analysis of the results showed that, com-
pared with patients with PD and HC subjects, GABA
+/tCr levels were higher in the patients with SSD+PD
(SSD+PD vs HC, P = 0.002; SSD+PD vs PD, P = 0.008)
or patients with SSD (SSD vs HC, P = 0.004; SSD vs
PD, P = 0.011). No differences in GABA+/tCr levels
were observed when comparing patients with PD and

HC subjects (P = 1.000) and comparing patients with
SSD+PD and patients with SSD (P = 1.000). Analysis of
covariance excluded the effects of age (F2,74 = 1.125,
P = 0.293), educational levels (F2,74 = 0.326, P = 0.570),
sex (F2,74 = 1.125, P = 0.293), and GM volumes
(F2,74 = 0.039, P = 0.845) on GABA+/tCr levels. The dif-
ference in GABA+/tCr levels found between patients with
SSD+PD and patients with PD was confirmed by per-
forming a general linear model on the 2 groups (group
difference: F1,42 = 12.404, P = 0.001) and by including
the PD disease duration as nuisance factor (disease dura-
tion effect: F1,42 = 1.585, P = 0.178).
The contents of Glx/tCr (mean � standard deviation:

HC, 0.0776 � 0.0315; SSD = 0.0941 � 0.0152;
PD = 0.0972 � 0.0437; SSD+PD = 0.0904 � 0.0186;
F3,74 = 1.585, P = 0.201) or tCr/water (HC =
[3.06 � 0.42] × 10−4; SSD = [2.87 � 1.00] × 10−4; PD =
[2.88 � 0.58] × 10−4; SSD+PD = [2.70 � 0.86] × 10−4;
F3,45 = 0.391, P = 0.760) did not differ among groups.
No significant differences were found among groups

when assessed for age (F3,74 = 0.226, P = 0.878), educa-
tional levels (F3,74 = 1.541, P = 0.212), sex (μ3 = 2.173, P
= 0.527), Mini-Mental State Examination (F3,74 = 0.555,
P = 0.646), Frontal Assessment Battery (F3,74 = 1.748,

FIG. 1. Proton magnetic resonance spectroscopy (1H-MRS). Panel A depicts a voxel of 2.0 (anterior–posterior) × 3.0 (left–right) × 3.0 (craniocaudal) cm3 cen-
tered on the medial prefrontal cortex. Panel B depicts the GABA-edited and Glx-edited MR spectra. Panel C shows the GABA+ and Glx peaks from a repre-
sentative subject. Panel D depicts pseudo-doublet peaks of Glx at 3.65 to 3.75 ppm from a representative subject. In the C,D panels, the representative
GABA-edited and Glx-edited spectrum is depicted in blue, the estimated GABA+ model in red, and noise in black. Panel E shows all spectra, collected group
by group. GABA, inhibitory γ-aminobutyric acid; Glx, excitatory glutamate + glutamine; HC, healthy control; PD, Parkinson’s disease; SSD, somatic symptom
disorder. [Color figure can be viewed at wileyonlinelibrary.com]
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P = 0.165), and GM within the 1H-MRS voxel (F3,74
= 0.991, P = 0.402). The PD disease duration (t40 =
−1.679, P = 0.101) and the scores of Unified
Parkinson’s Disease Rating Scale Part III (t40 = −0.247,
P = 0.806) and Hoehn and Yahr (t40 = 1.072,
P = 0.290) scales were comparable between PD groups.
No relationship was found, within-group, between

the levels of GABA+/tCr and the GM within the 1H-
MRS voxel (Supplementary Table 3).

Discussion

In the present study, we investigated the basal content
of GABA+ and Glx within the mPFC of a cohort of
patients with SSD+PD and patients with PD as well as
HC and SSD individuals. The analysis indicates that,
when compared with PD or HC individuals, patients
with SSD+PD and patients with SSD exhibit increased
GABA+ content. In contrast, mPFC levels of Glx were
not significantly different among groups.
In the brain, the most significant content of GABA is

found in the cytosolic compartment of interneurons,
where the neurotransmitter is synthesized from gluta-
mate. The remaining content of intraneuronal GABA is
stored in vesicles within presynaptic boutons, while a
smaller concentration of GABA is free in the extracellu-
lar space.44-46 Vesicular GABA mediates “phasic” inhi-
bition 47,48 and is less detectable by 1H-MRS as the
transmitter is bound to macromolecules.49 Therefore,
the 1H-MRS-GABA signals primarily represent the met-
abolic and extracellular pools of GABA. Although the
metabolic GABA pool does not affect neural
signaling,47,48 extrasynaptic GABA mediates “tonic”
inhibition.50 Several studies showed that the 1H-MRS

GABA+ levels negatively correlate with the magnitude
of functional MRI signals, the strength of the within-
network connectivity, the latency and width of the
stimulus-evoked hemodynamic response function curve,
and gamma oscillation frequency in the electroencepha-
lographic measures.22,23,51-59 Nevertheless, the largest
study did not find a correlation between gamma activ-
ity, as measured with magnetoencephalography, and
GABA/glutamate as measured with 1H-MRS.60

Our data thereby support the notion that, in patients
with SSD, increased inhibitory neurotransmission
within the mPFC can result in a tonic GABA-mediated
inhibition of glutamatergic projections, thereby promot-
ing a persistent overactivation of subcortical structures
that participate in the production of SSD. This interpre-
tation is in agreement with functional MRI–based evi-
dence indicating the presence, in patients with SSD, of
decreased mPFC activation10 along with signs of hyper-
activation of the amygdala10,13,61 and striatum.10 The
increased amygdala activity, in particular, can facilitate
a failure in the integration of body perceptions and
cognitive-affective information with sensory stimuli. On
the other hand, an increased striatal activity can pro-
duce a neurotransmitter imbalance within the cortical-
striatal-thalamocortical circuit that results in defective
thalamic filtering and sensory overload of the cortex
(Figure 2).17 In that context, it could be envisioned that
the altered cortico-subcortical communication triggers a
dysfunctional integration of body perceptions and
cognitive-affective information with emotional states,
thereby generating the SSD-related symptoms.2 The
mPFC is as a critical anterior hub of the default mode
network (DMN)62 which has been shown, when
dysfunctional,10 to be involved in the genesis of SSD.
This functional relationship between mPFC and DMN

TABLE 1. Demographic, clinical, and structural imaging features of the study participants

Variable HC SSD PD SSD+PD

N 19 14 19 23
Age 64.8 � 10.3 64.8 � 7.3 66.7�7.0 66.3 � 7.9
Sex 58% 50% 74% 61%
Educational level, y 10.4 � 4.3 10.8 � 3.1 9.5 � 5.2 8.0 � 4.3
GABA+/tCr 0.0819 � 0.0201 0.1119 � 0.0263 0.0848 � 0.0204 0.1095 � 0.0274
Glx/tCr 0.0776 � 0.0315 0.0941 � 0.0152 0.0972 � 0.0437 0.0904 � 0.0186
tCr/watera 3.06 � 0.42 2.87 � 1.00 2.88 � 0.58 2.70 � 0.86
GM 10,045 � 961 10,560 � 2188 9577 � 2594 10,176 � 656
FAB 16.5 � 1.4 15.9 � 1.6 14.9 � 3.6 15.1 � 2.3
MMSE 27.8 � 1.2 27.3 � 1.2 26.5 � 3.8 27.3 � 4.0
NPI-TOT 0.0 � 0.0 3.1 � 2.0 1.4 � 0.9 5.2 � 1.4
H&Y NA NA 1.7 � 0.5 1.5 � 0.5
PD duration, y duration 0.0 � 0.0 0.0 � 0.0 3.5 � 2.3 4.6 � 2.1
UPDRS-III 0.0 � 0.0 0.0 � 0.0 13.8 � 6.0 14.3 � 6.1

Values are expressed as mean � standard deviation. Data on tCr/water refer to 46 of 76 subjects (8/19 HC subjects, 9/14 SSD subjects, 13/19 patients with PD,
16/23 SSD+PD patients).
HC, healthy control; SSD, individuals with SSD who did not show other neurological or psychiatric conditions; PD, Parkinson’s Disease patients without somatic
symptom disorder; SSD+PD, Parkinson’s Disease patients with somatic symptom disorder; GABA, γ-aminobutyric acid; tCr, total creatine; Glx, contributes of glu-
tamate and glutamine; GM, gray matter; FAB, Frontal Assessment Battery; MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory Questionnaire;
TOT, total; H&Y, Hoehn and Yahr; PD, Parkinson’s disease; UPDRS-III, Unified Parkinson’s Disease Rating Scale III; NA, not applicable.

2188 Movement Disorders, Vol. 35, No. 12, 2020

D E L L I P I Z Z I E T A L



substantiates our hypothesis because the frontal dys-
function favors the decoupling of the default mode net-
work from task-positive networks. This phenomenon
encourages the formation of random connections that
link strong autobiographical correlates to trivial sen-
sory stimuli thereby producing SSD.2 In addition, by
destroying the inverse coupling between the DMN and
the salience network (SN),63,64 affects the switching of
attention between external and internal salient stimuli,
thus favoring a confusion in the judgment and percep-
tion of internal stimuli.2 Moreover, in line with the
increased GABA levels that we have observed in this
study, we have recently found that, in patients with
SSD+PD, the DMN is hypoactive and exhibit decreased
connectivity with the SN.30 Thus, the GABA-mediated
reduction of DMN activity that may occur in the
patients with SSD can be instrumental in promoting
altered functional connectivity with the SN, dysfunc-
tional filtering of significant peripheral stimuli, and,
ultimately, the production of SSD symptoms.
The metabolite contents within the mPFC did not dif-

fer between the SSD+PD and SSD groups. Therefore,
the changes that we observed in inhibitory neurotrans-
mission can be interpreted as functional signatures of
SSD that is independent of the presence of PD-related
pathology. However, it should be highlighted that our

patients with PD were in the early/middle stage of the
disease, stages in which the pathological spreading of
α-synuclein does not reach significant amounts in the
mPFC. On the other hand, it is important to consider
that the increased GABA levels in the mPFC,65,66 the
mPFC hypo-connectivity,67 and the occurrence of
SSD2,68,69 are all prognostic predictors of increased risk
of cognitive decline or progression to dementia. More-
over, the mPFC is a preferential and early site of
β-amyloid deposition.70 Therefore, future clinical
follow-ups will need to clarify whether the GABAergic
dysfunction in the mPFC is predictive for the develop-
ment of dementia in patients with SSD+PD.
A major limitation of the study concerns the lack of

information regarding the role played by glutamate in
the production of SSD in our patients with PD.
Although a recent study has indicated the presence of
increased Glx/Cr in the mPFC of patients affected by
functional motor symptoms,71 we did not find differ-
ences in Glx levels among our cohorts. Methodological
limitations impact somehow the heuristic value of the
finding, as the Glx signal is composed of a mix of gluta-
mate and glutamine, and 1H-MRS is unable to discrimi-
nate the distinct contribution of the 2 metabolites. The
separation of Glu and Gln with a 3T is challenging.
The use of some sequences has been attempted, but

FIG. 2. Proposed model for the production of somatic symptom disorder in Parkinson’s disease. GABA-ergic interneurons of the mPFC exert top-down
inhibitory control over the inputs of excitatory pyramidal neurons, which in turn regulate GABA-ergic interneurons within the amygdala and ventral stria-
tum. (A) Under physiological conditions, the mPFC, by acting on glutamatergic projections, downregulates the activity of the amygdala and the stria-
tum. The cortical-striatal-thalamocortical loop regulates the thalamic filtering of sensory information flowing from the midbrain to the SN and the
somatosensory cortex. (B) In patients with SSD+PD, the downregulation of the mPFC results in the hyperactivation of the amygdala and ventral stria-
tum in response to incoming stimuli, thereby leading to an imbalance in the integration of body perceptions and cognitive-affective information that
occurs upon sensory processing. The downregulation of the mPFC also promotes altered thalamic filtering and favors an abnormal flux of information
to the SN and somatosensory cortex. Moreover, the reduced connectivity between the DMN and SN exacerbates the dysfunctional activity in the selec-
tion and sorting of significant peripheral stimuli. The bold lines indicate the increase in neurotransmission. The red and blue rectangles depict hyperac-
tivity or hypoactivity, respectively. AMG, amygdala; dACC, dorsal anterior cingulate cortex; CSTC, cortical-striatal-thalamocortical circuit; GABA,
inhibitory γ-aminobutyric acid; Glu, glutamate; mPFC, medial prefrontal cortex; PD, Parkinson’s disease; SI/SII, somatosensory cortex; SN, salience
network; SSD, somatic symptom disorder; STR, striatum; VS, ventral striatum; VP, ventral pallidum; TRN, thalamic reticular nucleus; THAL, thalamus.
[Color figure can be viewed at wileyonlinelibrary.com]
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they are highly dependent on line width and still
unsuitable for the investigation of frontal brain regions.
The coedited Glx signal is concentration weighted (con-
tains �4 times more Glu signal that Gln), but also
weighted by editing efficiency (how much of the theo-
retically observable signal can be measured). The
editing efficiency of Glu and Gln does not add further
weighting. Significant advancements in technology will
be required to address this relevant issue. We have ana-
lyzed the 40-millisecond PRESS data using different of
analysis approaches (full/reduced basis set) within
Osprey (https://github.com/schorschinho/osprey; https://
www.biorxiv.org/content/10.1101/2020.02.12.
944207v2). It has not been possible to make reliable
measurements based on these spectra. The coefficient of
variations of Glx across the cohort is 81% and the data
are not of sufficient quality to separate Glu and Gln.
Moreover, much of the glutamatergic activity occurs
through the activation of the N-methyl-D-aspartate
receptors, activities that, unfortunately, cannot be
detected with 1H-MRS.57

1H-MRS measures are quantitative, but the choice of
reference signals remains a challenge. The tCr concen-
tration has been extensively employed as a standard ref-
erence in 1H-MRS studies21,38,71,72; however, its use in
PD-related studies is debatable as it is not clear whether
the parameter is stable or changes in these
patients.38,73-77 We have attempted to address this issue
by performing additional analysis on unsuppressed
spectra to calculate the tCr to water ratio for each indi-
vidual. As no significant difference in tCr/water was
found among groups, we reasoned that the use of
GABA+/tCr is a reliable method to investigate inhibi-
tory neurotransmission changes that occur within the
mPFC of patients with PD.
Finally, we want to point out that, within the

1H-MRS voxel, we did not find any relationship between
metabolite contents and GM. This finding is in line with
the current debate on this issue. Although some studies
suggest that the tissue volume affects the assessment of
GABA+ concentrations,78 another has shown that varia-
tion of GABA levels in the frontal lobe are independent
of age and local atrophy.66

Conclusions

Our data converge in supporting a role for GABA-
ergic neurotransmission within the mPFC in the produc-
tion of SSD in patients with PD. Further investigations
combining 1H-MRS and functional MRI will clarify
whether and how GABA influences the functional inter-
actions occurring within the fronto-subcortical loops as
well as shapes the interaction between the DMN and
SN. Nevertheless, data collected in the present study rep-
resent the starting point for the detailed investigation of

the neurochemical substrates of SSD+PD as well as the
exploration of novel neuroprotective strategies for the
patients.
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